If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-36x+90=0
a = 2; b = -36; c = +90;
Δ = b2-4ac
Δ = -362-4·2·90
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-24}{2*2}=\frac{12}{4} =3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+24}{2*2}=\frac{60}{4} =15 $
| F(x)=1.05x | | 6(2w-10)=3(4w+2) | | 2^0+2^{1-2x}=9.2^{-1-x} | | 9m-17=16 | | 36=-6u+2(u+8= | | g(0)=5(0)-4 | | 4x=4•(-5+3x)/2 | | 7y-6=16y+3 | | X3+y1=30 | | 3y-12=34 | | 2^(3x)=73 | | 2x-10÷3=x-1 | | 4(2×+5)+4=3(5x-6) | | 6(n+2)+2(3+7n)=-2 | | 6-12x=-6 | | 4-(2x=3)= | | 2(2m-5)+2(m+8)=-24 | | x-8/4=9/6 | | 4x=10+6x | | 9n-5=45 | | 9(×+7)=4x+13 | | 2x-14=-7 | | 3(x-7)=2(x+3) | | 16/24=n/6 | | 4-(9x+7)=7x-19 | | 5x+3/5=3/2+8 | | x/7+15=23 | | x*0.2=60000 | | 11-5x^2+3x=9 | | 11-5x^2+3x=3 | | -2-7x=19-2x | | a(8-7)^2=9 |